

Experience Summary: Evaluation & Certification of Biometric Technologies to ISO 15408 Common Criteria Standards

BC2002 Conference Paul Zatychec, EWA-Canada

Aim

- Share our experience from a recently completed evaluation of a biometric product
- Highlight some things we learned

Outline

- Introduce Common Criteria (CC)
- Application of CC to biometrics
- Highlights of the first biometric evaluation
 - Discuss what we did and guidelines applied
- Conclude with what this means

What are the Common Criteria and why should we care?

ISO 15408 Common Criteria

- Internationally recognized standards and methodology framework for security evaluations of IT products
- Provide a formal means to specify the <u>security characteristics</u> and <u>assurance</u> <u>requirements</u> for products
- Evaluations performed by nationally accredited laboratories, to different levels
- Results certified by national authorities

CC Objectives

- Answer Questions:
 - What are the security and assurance claims for the product (in precise terms)?
 - Are the developer's claims real?
 - What are the security weaknesses or vulnerabilities in the product?

Why IT Security Evaluations?

- Develop trust and confidence
 - Recognize different assurance levels
- Prove (or disprove!) that products function as claimed
 - formal, independently verifiable and repeatable methods
- Provide basis for formal product certification and international recognition

Why we should care....

- Use security to differentiate products (competitive advantage)
- Some countries, governments and large commercial customers are demanding certified products
- Some developers make amazing security and performance claims but do not support them very well......

U.S. Acquisition Policy

- All IT security products for U.S.
 Government and DoD use must be CC
 Certified, effective July 2002
- NSTISSP #11 National Information Assurance Acquisition Policy, dated January 2000

CC Security Requirements

- CC Protection Profiles (PP)
 - generalized security requirements for a generic class of IT products (from consumers perspective) e.g.,banking, healthcare
- CC Security Targets (ST)
 - describe specific security claims by producers of IT products

Protection Profiles (PPs) -

Document Outline

- High Level Architecture Description
- Assumptions, Restrictions and Environment
- Threats
- Organizational Security Policies
 - Technical
 - Procedural

Protection Profiles (PPs) -

Document Outline (Con't)

- Technical
- Procedural
- Security Requirements
 - Technical
 - Procedural

Evaluations Involve:

• ANALYSIS

- product documentation and traceability to requirements
- product design & implementation (security focus)
- development processes & procedures
- operation & Administration guidance and procedures

• TESTING

- independent & witnessed
- fully documented & repeatable
- REPORTS

How do the Common Criteria apply to biometrics?

State of the Practice.....

- Best practices and testing standards for biometrics typically have a "performance" versus "security" focus
- Need:
 - a security-oriented process
 - develop trust and confidence in claims
 - official assurance arguments
 - comprehensive guidance for all aspects of a CC evaluation as applied to biometrics

CC & Biometrics

- Common Criteria were not created with biometrics in mind
 - emerging technologies methodologies?
 - CC tailoring, interpretation and extension required
 - How to specify biometric security and privacy considerations in an ST and/or PP?
- Yet CC designed to be flexible....
 - So let's adapt it and use it....

Background Work

- Application of Common Criteria to Biometrics
 - EWA-Canada & Communications Security
 Establishment jointly conducted a project to consider application of the CC to biometrics
- Context:
 - Bioscrypt Inc. (formerly Mytec Technologies Inc.) sponsored world's first CC evaluation of a biometric technology

Preparing for Evaluation

- Objective: identify methodology considerations for CC evaluations of biometric technology
- Produced a generic model for biometrics
- Focused in detail on:
 - biometric system functions (versus CC Part 2)
 - security considerations for biometrics
 - security functional and assurance issues
 - test and analysis guidelines

Biometric Security Functions

- Capture Biometric Sample
- Create Template
- Create Biometric Identification Record
- Compare Template
- Decide Match/Acceptance
- Store/Retrieve Template
- Encrypt/Decrypt

Critical Areas

- Key security parameter for biometrics:
 False Acceptance/Match Rate(s)
 - How *real* are the claims?
 - why?
 - based on what analysis and <u>statistically validated</u> live-sample data?
 - at what defined confidence level?
 - are testing results objective and sufficient?
 - are the developer's claims defensible?

Critical Areas (continued)

- Challenges:
 - How accurately and consistently can the technology determine whether a user is who he/she claims to be?
 - testing population size depends on claims
 - large set of live test samples is very expensive
- Need to evaluate all other IT security considerations as well

Critical Areas (continued)

- Protection of user biometric information and credentials
 - while stored, processed, in memory, transmitted etc.
- Binding between user credentials and biometric template
- Where does cryptography fit in?

Test and Analysis Guidelines

- Performance versus Security-Oriented evaluation:
 - modes of operation; uniqueness (& robustness)
 of biometric; FM/FNM; environment
- Modes: enroll, verify, identify, update
- Unique vulnerabilities of biometrics

Test and Analysis Guidelines

- Environment factors
 - co-operative/non-; overt/covert; habituated/non; attended; public/private;open/closed
- False Match & False Non-Match Rates
 - measures of ambiguous nature
 - support the claim (test set-up, conditions, and sampling rate, size and type)
 - FNM convenience only? high availability?

Test and Analysis Guidelines

- Biometric "Strength of Function"
 - CC: qualification of security behaviour of underlying security mechanism
 - uniqueness and FM rate
 - data representative of normal operations
 - sufficient size
 - representative of users (gender, age, occupation)
 - Much work still to be done.....

Test and Analysis Guidelines

- Other testing guidelines:
 - developer versus evaluator testing
 - transaction types
 - number of attempts
 - live versus off-line samples
 - collecting data
 - FM FNM calculations
 - reporting

The Evaluation

The Evaluation

- Product:
 - BioscryptTM Enterprise for NT Logon
- Evaluation Assurance Level (EAL) 2
- Security Target Implications
- Evaluation Methodology
 - Structured analysis
 - Comprehensive testing
- Dealing with cryptography

Evaluation Highlights

- Used guidance developed and model
 - Methodology worked!
- All developer claims are real and credible
 - provable based on documented valid testing, not just theoretical potential or robust design
- Testing very comprehensive, security oriented and statistically valid
- Cryptography validated against FIPS 46-3 and FIPS 81 standards

What we did

- Very structured analysis
 - adapted, applied and augmented the CC
 - applied the guidance we developed
- Tested, tested, tested
 - 12 major goals plus vulnerability testing
- Dovetailed the evaluation with the product development process
- Independently <u>proved</u> developer claims

*EV/A

Conclusions: What this means

- The CC *can be* and *has been* used for biometric IT security evaluations
- A biometric fingerprint product has been Certified using the CC standards
- Vulnerability testing of biometric technologies can be done in CC context

Conclusions (Con't)

- Structured methods, guidelines and real experience are now available for CC security evaluations of biometrics
- Biometric False Match Rate claims have been proven with statistically validated live testing

Contact:

Paul Zatychec

Director IT Security EWA-Canada Ltd.

pzatychec@ewa-canada.com

Voice: (613) 230-6067 extension 227